
Eur. Phys. J. D 17, 75–78 (2001) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Time analogue of the z-scan technique suitable to waveguides
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Abstract. We propose a new technique to perform measurements of nonlinearities in optical waveguides
based on the variation of an optical pulse chirp. This technique is analogous to the z-scan technique in
the time domain. We analyze the new experimental method analytically and numerically, obtaining an
useful expression relating the nonlinearity with a peak-valley structure. Practical ways to implement the
technique are discussed.

PACS. 42.65.-k Nonlinear optics – 42.65.Wi Nonlinear waveguides – 42.81.Cn Fiber testing
and measurement of fiber parameters

The z-scan technique is a well established technique to
characterize optical nonlinearities of bulk materials [1].
Many variants have been developed for different kinds of
media [2], including absorbing ones [3], and using differ-
ent beam profiles as top hats [4], etc. Nevertheless these
methods are not useful for measurements of nonlineari-
ties in optical waveguides. In this article we propose a
novel technique which is an extension of the z-scan to the
time domain, opening the possibility to use this powerful
method in waveguides. Here we will use a fundamental
analogy observed very early in the development of non-
linear optics [5], the equivalence between space and time
in the equations describing the propagation of pulses in
waveguides and the propagation of a profile in the space
using the paraxial approximation. When there is only one
transverse spatial dimension, the analogy is straightfor-
ward. In the nonlinear waveguide environment, for exam-
ple, spatial solitons [6,7], modulation instability [8,9] and
beam profile compression [9–11] have all been reported.
For two transverse dimensions, the Kerr effect combined
with diffraction leads to self-focusing or self-defocusing of
the beam depending on the sign of n2. If the bulk medium
is thin as in the z-scan, only a change in the phase of the
beam profile is caused, but this effect revealed itself very
useful in the determination of the sign and magnitude of
the nonlinearity.

In the z-scan technique we make a measurement of
the intensity passing through one aperture (localized at
a far field distance) of a focalized Gaussian beam, when
we move a sample in the z-direction. If we consider the
effects of a converging thin lens over a collimated Gaussian
beam we can show that a quadratic phase dependence
is imposed over the beam profile [12], with an opposite
sign of the quadratic phase generated by diffraction in the
propagation in free space. This quadratic phase will cause
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a focalization of the beam until a minimum spot, followed
by an expansion with a quadratic phase growing up again
since diffraction keeps doing its job. The nonlinear sample,
inserted in the beam path, produces a nonlinear change
in wave front which appears at the far field, but does not
change the radial or angular amplitude distribution at the
sample.

The focalization of a Gaussian beam is completely
analogous to the compression of a Gaussian pulse with
quadratic phase dependence (usually described as a lin-
ear frequency scanning or chirp) opposite to the group
velocity dispersion [13,14]. In our method [15] the sample
scanning in the z-direction of the z-scan method is sub-
stituted by a variation in the linear chirp of an optical
pulse, and the transmission measurement by an aperture
is accomplished by the energy integration over a spectral
window.

In order to formally establish the analogy we suppose
an initial chirped Gaussian pulse:
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where I0 is the initial pulse peak intensity, T0 is the pulse
duration and C0 is a positive defined constant associ-
ated to the phase and related to the frequency scanning
through δω = −∂φ/∂t. Obviously as C0 is a positive con-
stant, the pulse has a quadratic phase dependence with
time similar to the one imposed by the lens in the Gaus-
sian beam of the z-scan. Let us consider this pulse prop-
agating in a dispersive fiber waveguide with anomalous
dispersion. At the output of a fiber with a longitudinal
dimension of L we have:

A(L, t) =

√
I0(1− iC0)

1− iCD
exp

[
−1 + iCD

2
t2

T 2
1

]
(2)



76 The European Physical Journal D

where:
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where β2 is the group velocity dispersion and LD =
T 2

0 /|β2| is the dispersion length [13]. Now we have our
focalized Gaussian beam in the time domain, but we still
need to put the nonlinear sample waveguide “inside the
beam” and travel with it in the z-direction. To do so,
we get the optical pulse with a linear chirp coming out
from the dispersive waveguide with “adjustable” length L
and couple that pulse into the nonlinear optical waveguide
under investigation. Mathematically it means that one is
solving the problem of propagation of the pulse, given by
the equation (2), in a nonlinear waveguide in the limit
where the dispersive effects are negligible, obtaining:

A(`n, t) = A(L, t) exp
[
iγ |A(L, t)|2 `n
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where Φ0
NL = γI0`nT0/T1 is the nonlinear phase at the

pulse center, CNL = CD +2Φ0
NL, `n is the nonlinear waveg-

uide length and γ is related to the nonlinear-index coeffi-
cient in a standard way [13] and in principle can be differ-
ent of the usual Kerr coefficient. As the self-phase modula-
tion effects are dominant, we may see that the nonlinearity
affects only the phase (or chirp), without any modification
of the pulse shape. This situation is completely analogous
to the situation of the beam profile just after it crosses
the sample in the z-scan technique. In order to get the
aperture transmission in the time domain, for each “z-
position” of the sample, we must obtain the equivalent of
the far field, which is simply the Fourier transform of the
pulse coming out of sample waveguide.

We define our equivalent to z-direction in the time
as η = L/LD and the nonlinear phase imposed by the
sample as ∆ = γP0`n where P0 is the pulse peak power.
The transmission through the time domain aperture will
be taken as the transmission at the central peak of the
spectrum (an infinitesimal aperture), which normalizing
to the central peak of the spectrum before the sample,
produces:
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In Figure 1 we have depicted the transmission at the cen-
tral peak of the wavelength output spectrum when we
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Fig. 1. Spectral central peak window transmission against nor-
malized dispersion parameter.

varied the dispersive factor η, showing a similar variation
as observed in the standard z-scan technique. In the case
showed in the figure, the total nonlinear phase shift was
only 200 milliradians, produced by the propagation in a
sample waveguide with a positive nonlinearity. The central
peak to valley transmission difference and nonlinearity re-
lation, which is the main result of this article, is obtained
from the previous equation:

∆TP−V =
8
√

3
9
∆. (7)

It should be noted that in time domain a controllable
quadratic phase variation (a linear chirp) must be gen-
erated in a different way that in the space domain. In fact
the problem is how to obtain in practice the change in the
signal chirp, equivalent to the situation in the z-scan when
the sample crosses the beam waist point. A practical way
to overcome this problem can be devised using a fiber-
grating pair compressor. Let us consider an intense opti-
cal pulse propagating through an optical fiber, generating
new frequencies through SPM with dispersive effects act-
ing together, followed by a pair of diffraction gratings as in
a fiber-grating compressor. The grating pair alone is not
enough to generate the desired chirps, because there is no
configuration capable to produce both positive and nega-
tive chirps in a continuous way. However when the grating
pair distance is perfectly adjusted in a fiber-grating com-
pressor to obtain the shortest pulse coming out, we have
a resulting pulse chirpless [16].

In order to quantify this problem, we used the beam
propagation method to obtain the pulse coming out of the
fiber-grating compressor which will be coupled into the
nonlinear sample waveguide. The points in Figure 2 rep-
resent the normalized spectral peak transmission obtained
by propagating the output of the fiber-grating compressor
(with a 2.5 radians nonlinear phase shift imposed by SPM
in the optical fiber) through the sample waveguide for dif-
ferent grating separations. We observe a different shape
from the one obtained in Figure 1. However, the peak
to valley transmission variation still gives us the nonlin-
earity value of the sample waveguide, agreeing with the
equation (7).
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Fig. 2. Spectral central peak transmission as a function of the
normalized grating separation.
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Fig. 3. Spectral central peak window transmission against
pump power to different nonlinear index.

Another experimental alternative is using the same
experimental setup and instead of moving the gratings,
change the input power of the pulse entering the fiber-
grating compressor. Initially adjusting conveniently the
grating pair to obtain a perfectly compressed pulse with-
out using the maximum input power available, and then
increasing and decreasing the fiber-grating compressor in-
put power, we may also obtain the two different regimes
of chirp coming out of the grating pair. In fact now we
have the time analogue of a nonlinear lens and we dy-
namically change the focal distance controlling the input
power. In Figure 3 we show a few transmission curves cal-
culated for different amounts of nonlinearity and clearly
the same peak-valley feature is present. It is not obvi-
ous that is still possible to obtain the nonlinearity from
the peak to valley transmission variations of these curves
since we are changing the coupled power into the nonlin-
ear waveguide and the resulting nonlinear phase shift is
variable too. However we should remember that usually a
nonlinear refractive index is independent of the intensity
and in fact can be determined by the ratio between the
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Fig. 4. Nonlinear index against peak to valley transmission
variation to different nonlinearity values.

nonlinear phase and input power necessary to originate
the phase, i.e. γ = ∆/P0`n. To prove that, in Figure 4
we depicted the numerically obtained relation between
the peak-valley transmission and the sample nonlinearity,
showing a linear relationship between them and reassuring
that only the measure of the peak to valley transmission
variation is enough to obtain the value of the nonlinear in-
dex. These experimental setups can in principle be made
using 10 ps duration pulses with peak powers of a few
Watts in near infrared spectral region and standard grat-
ing with separations of a few ten’s of centimeters.

In conclusion, we have proposed a novel method to
determine the waveguide optical nonlinearities using an
optical pulse with a variable chirp. We obtained an ana-
lytical expression relating the peak to valley spectral win-
dow transmission variation with the optical nonlinearity.
Numerical results obtained using realistic experimental se-
tups based on a fiber-grating compressor with a variable
grating separation or variable input pulse power, agreed
quite well with the analytical expression, showing that this
method can be implemented to practical applications.
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